Simultaneously Dissipative Operators and the Infinitesimal Moore Effect in Interval Spaces
نویسندگان
چکیده
Abstract. In solving a system of ordinary differential equations by an interval method the approximate solution at any considered moment of time t represents a set (called interval) containing the exact solution at the moment t. The intervals determining the solution of a system are often expanded in the course of time irrespective of the method and step used. The phenomenon of interval expansion, called the Moore sweep effect, essentially decreases the efficiency of interval methods. In the present work the notions of the interval and the Moore effect are formalized and the Infinitesimal Moore Effect (IME) is studied for autonomous systems on positively invariant convex compact. With IME the intervals expand along any trajectory for any small step, and that means that when solving a system by a stepwise interval numerical method with any small step the interval expansion takes place for any initial data irrespective of the applied method. The local conditions of absence of IME in terms of Jacobi matrices field of the system are obtained. The relation between the absence of IME and simultaneous dissipativity of the Jacobi matrices is established, and some sufficient conditions of simultaneous dissipativity are obtained. (The family of linear operators is simultaneously dissipative, if there exists a norm relative to which all the operators are dissipative.)
منابع مشابه
Simultaneously Dissipative Operators and the Infinitesimal Moore Effect in Interval Spaces1
In solving a system of ordinary differential equations by an interval method the approximate solution at any considered moment of time t represents a set (called interval) containing the exact solution at the moment t. The intervals determining the solution of a system are often expanded in the course of time irrespective of the method and step used. The phenomenon of interval expansion, called...
متن کاملSimultaneously Dissipative Operators and the Infinitesimal Wrapping Effect in Interval Spaces
Работа посвящена приложениям теории совместно диссипативных операторов к интервальному анализу и химической кинетике. Главным объектом исследования является нежелательный “эффект упаковывания”, широко проявляющийся при численном решении на ЭВМ эволюционных дифференциальных уравнений с интервальными параметрами. Основной результат работы — доказательство типичности эффекта упаковывания в малом, ...
متن کاملLinear v{C}ech closure spaces
In this paper, we introduce the concept of linear v{C}ech closure spaces and establish the properties of open sets in linear v{C}ech closure spaces (Lv{C}CS). Here, we observe that the concept of linearity is preserved by semi-open sets, g-semi open sets, $gamma$-open sets, sgc-dense sets and compact sets in Lv{C}CS. We also discuss the concept of relative v{C}ech closure operator, meet and pro...
متن کاملON THE CAPACITY OF EILENBERG-MACLANE AND MOORE SPACES
K. Borsuk in 1979, at the Topological Conference in Moscow, introduced concept of the capacity of a compactum and asked some questions concerning properties of the capacity ofcompacta. In this paper, we give partial positive answers to three of these questions in some cases. In fact, by describing spaces homotopy dominated by Moore and Eilenberg-MacLane spaces, the capacities of a Moore space $...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997